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Abstract-Numerical solutions of the hydrodynamic stability equations which model disturbances in 
steady-state, laminar flows generated by natural convection of cold, pure water adjacent to a vertical, 
planar, isothermal surface have been obtained. The results yield neutral stability curves representing the 
relative hydrodynamic stability of the two previously predicted multiple, steady-state base flows. These 
two steady states are called the upper- and lower-branch solutions (the upper-branch solution has the 
higher heat transfer rate (-O’,(O)) at the vertical isothermal surface). New results presented here include 
the first hydrodynamic stability analysis for cold water which includes the range of ambient temperature 
(T, ) 5.6896-8.0586‘C (if the plate temperature To is WC), where inside buoyancy force reversals exert a 
strong influence upon the flow. This range corresponds to values of the density extremum parameter 
R = (T,,-T,)/(T,- T,.) in the interval (0.29181, 0.50) where T,,, is the density extremum temperature. 
The results show that for the flows corresponding to the upper- and lower-branch solutions, the critical 
Grashof number systematically decreases as the heat transfer rate decreases. Namely, an increase in the 
magnitude of inside buoyancy force reversals, which are associated with the locations of the two points of 
inflection in the vertical velocity components of the base Row, always cause the flows to be significantly 
more unstable. The flows corresponding to the upper-branch solutions were, in general, found to be more 
stable than the Rows corresponding to the lower-branch solutions. This agrees with previously reported 
configurational stability results. The present results also indicate that oscillation between the upper and 
the lower Skidy-St&S is possible (inasmuch as it is consistent with hydrodynamic stability theory) in the 

range 0.2918 I < R < 0.34, but not for R > 0.34. 

1. INTRODUCTION 

NATURAL convection flows in cold water commonly 
exist around us. The phenomena of instability and 

transition of these flows are of particular interest, 

since these flows arise in many applications, both in 

the environment and in technology [ 1, 21. 
Pure water has a density extremum near 4°C. This 

behavior dramatically affects the stability charac- 
teristics of natural convection flows in cold water. 
The occurrence of buoyancy force reversals across a 
thermal boundary layer, leading to reversals in the 
flows, complicates their stability analysis. The need for 
classical stability analyses concerning these complex 
processes is evident. Our study is the first to analyze 
the neutral stability of laminar, vertical natural con- 
vection flows in cold pure water in the presence of 
buoyancy force reversals. In this first part we treat the 
case of downflow. 

The present study is the instance in which the sta- 
bility equations have been solved using an adequate 
computing code (COLSYS) designed to accurately 
solve two-point boundary-value problems [3], in con- 

trast to previous investigators cited below, who also 
did numerical studies. Moreover, our results are new 
in that we have analyzed the neutral stability of both 
multiple steady-state solutions found in this problem 
by El-Henawy et al. [4]. 

Most of the past stability studies utilize the Bous- 
sinesq formulation of the density as a linear function 
of temperature, such as for flows in air, warm water 
etc.; for example, Nachtsheim [5], Hieber and 
Gebhart [6], Jaluria and Gebhart [7], and Jang [Xl. 
More recently, Gebhart and Mahajan [9] and Gebhart 
et al. [2] have comprehensively reviewed the literature 
on the stability of natural convection flows in this 
regard by discussing calculations and observations of 
amplification of disturbances. 

In the present study, the system under consideration 
(as seen in Fig. 1) is quiescent, cold, pure water adjac- 
ent to a vertical, planar, isothermal, impermeable sur- 
face. In this situation the Boussinesq approximation 
does not accurately express the buoyancy force. This 
is so because if the variation of local temperature T 
spans the temperature at the density extremum T,,, 
of cold pure water (its density is maximum at 
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NOMENCLATURE 

A wave number paramctcr. XC equation 

(1% 
A, A at G,, (.j = I. 2.3) 
B lrcquency parameter, see equation (18) 
B* B at G,, 

B, B at G,j, (j = I, 2,3) 
c wave speed 
(‘1. (‘2, (‘3 complex constants 

.r4e, 

characteristic length 
generalized stream function 

.f physical frequency 

9 acceleration due to gravity 
G modified Grashof number, 4(Gr,/4) ’ A 

G, critical Grashof number 
Gr(s) local Grashof number 

(G,,, g/l crossing points of the upper- and 
lower-branch solutions in the (G, s()- 
neutral stability plane (.j = 1, 2, 3) 

(G,,,, b,) crossing points of the upper- and 

H(u) 

Q(Y) 

i,, kz 
M 

P 
P 
Pf 

rl 

R 

Sk) 

w 

T 
II 
u, 1’ 
ii, 6 

W(v) 

lower-branch solutions in the (G, /?)- 
neutral stability plane (.j = I. 2. 3) 
nondimensional disturbance pressure 
amplitude function 
disturbance pressure amplitude 
function 

&-I) 
constants, see equations (14) and (I 5) 
largest magnitude of any of the 
eigenvector components, see 
equation (I 7b) 
pressure 
disturbance pressure 
Prandtl number 
exponent in the density relation of 
Gebhart and Mollendorf [ 181 
density extremum parameter, see 
equation (I) 
nondimensional disturbance 
temperature amplitude function 
disturbance temperature amplitude 
function 
temperature 
characteristic velocity 
velocity components 
disturbance velocity components 
nondimensional local buoyancy force 

s, I’ 

Z’ 

z,, 

coordinates 
coefficient. see equation (I 2c) 
coefficient in the stability equation, 
6q~0,-R~I’/-‘(0,-R)~~0,-R~. 

Greek symbols 

kinematic viscosity 
density 
time 
nondimensional disturbance velocity 
amplitude function 
disturbance velocity amplitude 
function 
eigenvector, see equation (13) 
stream function ‘hi J,) 

$(x. J’, T) disturbance stream function. 

complex wave number, tlR + ir,, 
o! = aR for neutral stability 
z at G,, 
thermal expansion coefficient in the 
density relation of Gebhart and 
Mollendorf [IS], (Cmy 
disturbance frequency 
+ 1 .O for upflow, - I .O for downflow 
thermal boundary layer (in Fig. 2) 
similarity variable 
points of inflection in the velocity 
profile (,j = 1. 2) 
nondimensional temperature, 

(T- T,)I(To- T,) 
disturbance temperature 
wavelength 

Subscripts 
b base flow property 
m at the extremum condition 
I imaginary 
0 surface condition 
R real 
Cc at ambient condition. 

Other symbols 
dimensional quantity 
disturbance quantity. 

T,,, = 4.029325”C at I bar), a considerable buoyancy where To and T, are the temperature of the isothermal 
force reversal arises across the thermal boundary surface and the temperature of the ambient medium 
layer. To efficiently predict the resulting subtle flow (cold pure water), respectively. 
patterns, the following density extremum parameter The analysis of the steady-state flows in the presence 
was defined by Gebhart and Mollendorf [IO] : of buoyancy force reversals in the range of 0 < R 

< 0.5 is complex. To save space we do not discuss 
i-m--T, R=- (1) 

these matters in detail here, although they are import- 
To-T, ant in relation to our stability analysis; but we refer 
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X 

(a) (b) 

Fm. I. The coordinate system : (a) upflow : (b) downflow. 

to Wilson and Vyas [I I] and Carey and Gebhart [l2] 
for experimentally observed flows and to Gebhart and 
Mollendorf [IO], Carey et al. [l3], and El-Henawy 
ef al. [4] for the representation of similarity solutions 
for such flows. 

This study is concerned principally with the pres- 
entation, for various values of the density extremum 
parameter R in the range of 0.29181 ,< R < 0.50, of 
numerical results that, it is hoped, predict realistic 
physical conditions for neutral stability for the base 
flows generated by natural convection adjacent to a 
vertical. isothermal plate (as seen in Fig. I) in cold 
pure water. The hydrodynamic stability of these base 
flows is of special interest, since under these conditions 
inside buoyancy force reversals (such as those seen in 
Fig. 2) exert a strong influence upon the flow and the 
multiple steady-state solutions of El-Henawy et al. [4] 
are predicted to exist. 

It is convenient to distinguish among the multiple 
steady-state solutions as follows. For the two steady- 
states which exist at the same R for the flow (as seen 
in Fig. 3) in the range 0.29181 < R < 0.45402, the 
solution that has a higher heat flux (-0;(O)) is called 
the upper-branch solution and the other, with a lower 
heat flux, is called the lower-branch solution. 

The influence of these multiple solutions on insta- 

R 

FIG. 3. Details of variation of heat transfer rate -Ok(O) with 
R in the region 0.2918 I Q R C 0.45402 (largely downflow). 

From El-Henawy et al. [4]. 

bility and transition may be considerable. The main 
results of this study show this to be the case. 

The numerical study of the stability of the base 
flows for non-Boussinesq situations is difficult. Diffi- 
culty exists partly because the base flow itself is sen- 
sitive to buoyancy force reversal via the nonlinear 
buoyancy force term in the mathematical model as 
discussed in El-Henawy et al. [4]. An additional sig- 
nificant difficulty may come from the presence of a 
singularity in the linear stability equations (the so- 
called Orr-Sommerfeld equations) as used by Qureshi 
[14] and Higgins [I 51; see also, Higgins and Gebhart 
[I61 and Qureshi and Gebhart [ 171. Thus, we refor- 
mulated the stability equations to render them non- 
singular. This is done in Section 2.2. 

Secondly, because the system of stability equations 
is a moderately stiff two-point boundary-value eigen- 
value problem, the method of simple shooting used 
previously in refs. [5, 61 is unsuccessful owing to the 
serious impact of accumulated integration error and 
the inaccuracy resulting from superpositions. Thus, 
this system must be solved by a state-of-the-art, two- 
point boundary-value problem solving code. A com- 
puter code, COLSYS [3], based on orthogonal col- 
location was used for this purpose. 

Due to the difficulties mentioned above, although 

T P 

TW Pm 

T,,, -- 

TO lc 
STY 

PC0 

FIG. 2. For R = OX, an inside buoyancy force reversal appears. 
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knowledge of stability of the base flow (in the range 
0 < R < 0.5) is important in applications, the pre- 
vious numerical study of Higgins [15] yields limited 
information concerning only one simple case : R = 0.4 
(the upper-branch solution only). 

Qureshi [14] first utilized the density relation of 
Gebhart and Mollendorf [I81 to calculate the buoy- 
ancy effect in a study of hydrodynamic stability for 
flow adjacent to vertical uniform heat flux and iso- 
thermal surfaces in ambient water at the density extre- 
mum temperature, i.e. R = 0 (see also ref. [I71 for 
stability results at two different levels of pressure). 

Higgins [I 51 solved the stability equations for a 
vertical isothermal surface for R = 0.4 (upper-branch 
solution). and for several values of R with 1.0 < R 
< 8.0 and R = -0.5 (see also ref. [16]). All of these 
numerical results were obtained via simple shooting. 

The experimental studies by Higgins and Gebhart 
[I91 for an isothermal surface at R = 0.0, 0.12, and 
0.4 and of Qureshi and Gebhart [20] for a uniform 
heat flux surface at R = 0 in cold water indicate that 
the density extremum behavior was found to delay 
transition, compared to results in water at room tem- 
perature. Also, they found that the selective ampli- 
fication mechanism is less sharp for cold water than 
for water at room temperature. 

El-Henawy et al. [21] studied the ‘conjgurutionul 
stabi@v’ of the multiple steady-state solutions found 
by El-Henawy ef al. [4]. They found that the lower- 
branch solutions are less stable than the upper-branch 
solutions for R > 0.29181. This agrees with the 
present study. However, the weakest aspect of their 
configurational stability analysis is that it could not 
provide important information such as the point of 

0.4914 (i.e. if IT,-- T,l = 4°C and whose cor- 
responding physical frequency ,f > 0. I6 Hz). It will 
also be shown that increasing the heat transfer rate of 
base flows (-Ok(O)) causes the corresponding critical 
Grashof number to increase systematically. 

2. FORMULATION OF THE GOVERNING 
EQUATIONS 

The similarity equations for steady laminar base 
flows (with the coordinate definitions in Fig. 1) are 
well known [4, IO, 131. To formulate them the fol- 
lowing nondimensional quantities were used: r~ (a 
similarity variable),&(n) (stream function), and t&,(q) 
(temperature), where 

and 

(2a) 

G = 4({Gr(x)) ‘14, Gr(.u) = ‘$a,jT‘,--T, 1“. 

(2b) 

Here c(~ and q are the thermal expansion coefficient 
and exponent, respectively, from the density relation 
of Gebhart and Mollendorf [IX]. For conditions at 
I bar pressure and no salinity, u-r = 9.297173 x 
10-6(“C)-y and y  = 1.894816. The base flow buoy- 
ancy force term is : 

instability (i.e. the critical Grashof number) and the (3) 
frequencies and wave numbers of unstable disturb- 
antes. Thus, the need for the present study as an 

with 6 = + 1 for largely upward flow and R 

analysis of classical hydrodynamic stability is evident. 
< 0.15180, 6 = - I for largely downward flow and 

In addition, El-Henawy et al. [21] were able to 
R > 0.29 18 1. Here P,,, denotes the extremum density. 

numerically determine the stabiiity of solutions near 
The equations for the base flow in similarity form 

R = 0.15180, while we were not. Their approach has 
are : 

the advantage relative to ours of ease of numerical 
.f~+3fbf;:-2fbz+s(lo,-RIq-IRIY) = 0 (4a) 

calculations of the real eigenvalues and eigen- &+3Pr j&, = 0 (4b) 
functions. 

The present numerical study includes neutral sta- 
bility results for the region of the base flows cor- 
responding to 0.29181 < R < 0.50 for Pr = 11.6. In 
particular, neutral stability curves are obtained at 
R = 0.30, 0.32, and 0.34 for the two steady-states, 
corresponding to the upper- and lower-branch solu- 
tions which were found by El-Henawy et al. [4]. Also, 
portions of the ‘noses’ of the stability curves are com- 
puted for the single solution at R = 0.29181, and for 
the upper-branch solution only at R = 0.38, and 
rather more complete stability curves are obtained 
for the upper-branch solutions at R = 0.36, 0.40, and 
0.50. 

It will be seen that a flow in the range 0.29181 
< R ,< 0.50 is always stable for a disturbance whose 
dimensionless frequency parameter B is greater than 

with boundary conditions 

j-b(O) = fb(0) = l-0,(0) = Jb(al) = O,(co) = 0; 

(5) 

see Gebhart and Mollendorf [lo]. Pr = 11.6 is the 
Prandtl number for cold pure water. 

Here we only consider downward flows in the range 
0.29181 < R < 0.50, where inside buoyancy force 
reversals occur. The boundary-value problem (4a,b)- 
(5) was solved on intervals [0, r],] with q, = 60-l 50 
by using two computer codes: COLSYS [3] and 
BOUNDS [22]. To generate the families of solutions, 
the continuation schemes of El-Henawy et al. [4] were 
employed. Examples of dimensionless vertical velocity 
and temperature profiles for multiple, steady-state 
base flows are given in Figs. 4 and 5. Also, the profiles 
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FIG. 4. Dimensionless vertical velocity componenl /h(r)). For 

the upper-branch solutions (-). the- arrow indicates 
increasing R for R = 0.29181, 0.30, 0.32, 0.34, 0.36, 0.40. 

and 0.50. For the lower-branch solutions (‘. .). the arrow 
indicates increasing R Ibr R = 0.30, 0.32,0.34, and 0.36. 

of local buoyancy force W= IU,-RI‘f-IRIY are 
shown in Fig. 6. 

The heat transfer rates -O’,(O) of the upper- and 
lower-branch base flows in Fig. 3, each of which has 
the same R, r/, and Pr, may differ by as much as a 
factor of ten or more. The lower-branch solution has 
thicker thermal and hydrodynamic boundary layers 
and a more vigorous (reversed) flow than does the 
upper-branch solution. For upper-branch solutions, 
as R decreases from 0.50 to 0.29 18 I, the upward buoy- 
ancy force near r) = 0 increases and the shear stress at 
the surface,f[ (0) decreases and becomes negative. For 
the lower-branch solutions, the upward buoyancy 
force causes an inside flow reversal, which becomes 
steadily stronger as R increases from 0.29181 to 0.45 
(see Figs. 4 and 6). 

Due to the effects of inside buoyancy force rever- 
sals, all the base flows corresponding to 0.29181 
< R < 0.50 have two points of inflection in their 

FIG. 5. Normalized temperature O,(n). For the upper-branch 
solutions (-), the arrow indicates increasing R for 

R = 0.29181, 0.30. 0.32, 0.34. 0.36, 0.40, and 0.50. For the 
lower-branch solutions (. .), the arrow indicates increasing 

R for R = 0.30.0.32, 0.34, and 0.36. 

0.42 ,- 

-0211 
0 1.6 32 4.8 

? 

FIG. 6. Distribution of local buoyancy force W(u). For the 
upper-branch solutions (-), the arrow indicates increas- 
ing R for R = 0.30.0.31. 0.32,0.34. and 0.36. For the lowcr- 
branch solutions (. ‘), the arrow indicates increasing R for 

R = 0.30, 0.32, 0.34, and 0.36. 

velocity profiles. Also, as the heat transfer rate 
-Ok(O) increases from near 0.0 to above I and, sim- 
ultaneously, the shear force,fg(O) increases, we find 
that the two points of inflection in the velocity profiles 
shift towards q = 0. The shift of the two inflection 
points might increase the limit of stability of the flow, 
just as in forced flow problems [23]. This point will be 
discussed later. 

2.2. The linear stability equations 
A linear stability analysis is employed : we assume 

perturbations that are small two-dimensional dis- 
turbances of the vertical velocity U, horizontal velocity 
c, temperature 0 and pressure p; namely, u = 
u,(s. 1~) + a(.~, J, r) and analogously for 11, p and 0. 
The disturbance vector (ii, d, p,n) may be decomposed 
into a periodic series. To handle the linear stability 
problem mathematically, the following ‘modes of the 
stream, temperature and pressure functions, 6, dand 
b, are postulated : 

$ = G(y) e ilir-/lrl (64 

(j = &,) e”~~-lr) (6b) 
p = Ho)) e”i”-b” (6~) 

where for neutral stability, 07 and B may be expressed 
as C? = 27[/%, /? = 27rj: The quantities o? and ,!? are the 
wave number and frequency, respectively. 

The disturbance quantities are normalized in the 
following manner, where D and U are the charac- 
teristic length and velocity : 

fi0’) H(v) = ELI?’ 

u = ZD, /j’,!!! D,!? (I=%! (j’) 
(I’ G’ 4x . 



428 Y. HWANG er nl. 

In our formulation of the linear stability equations, The foregoingequations (IOaac) and (1 I) constitute 
the buoyancy force disturbance is given special con- a complex-valued. sixth-order, linear system of homo- 
sideration. The perturbed buoyancy force term is gcneous differential equations. The eigenvalues of the 

a,-P) =~~51Pm~~I~“-~I.I~(I~h-~+~l~-I~l”). 
system are the nondimensional wave number a and 
frequency 8. The ratio b/a is called the wave speed c. 

(8) If  the terms H(q) and H’(q) are eliminated from the 

Its conventional Taylor series expansion about 0, can 
system, then these stability equations are the same as 

be written as 
the conventional ones of Qureshi [I41 and Higgins 
[I51 (see also refs. [ 16, l7]), but our boundary con- 

I&-RfW = 4 IO,-RI -~ub-RI~-‘a+.(ii) (9) 
ditions are slightly different. 

where o(g)/ii+ 0 as 6+ 0. 
Thus, the net first approximation to the per- 

turbation of the buoyancy is Z,& where 

(4-R) 
z, = bq Iu,-R, l&,-RI”- ‘. 

The postulated disturbances are substituted into the 
complete time-dependent Navier-Stokes and energy 
equations. The usual parallel flow approximation is 
applied and the higher order disturbance terms are 
neglected. Some aspects of the s-dependence of (I and 
D are neglected. This has been discussed by Hieber 
and Gebhart [6]. The pressure disturbance terms H 
and H’ are retained to avoid a singularity. (If the 
pressure components Hand H’ are not retained by us 
in the s- and .r-momentum disturbance equations, 
then we must differentiate the buoyancy force 
W(O,, R) = IOh- RI’-- /RI” to eliminate the pressure 
disturbance terms from the system and to linearize it 
[I 51. However. since 0s decreases monotonically from 
I to 0 as ,I goes from 0 to co and since y  = I .8948 16, 
d’W(O,, R)/L%,? has a singularity for 0, = R, which 
we have avoided.) Our nonsingular Orr-Sommerfeld 
equations for buoyancy-induced Ilow are : 

.r-momentum 

(j-;-c)@‘-&‘0 = -H+ ~(0”-a’@‘+Z,S) 

(loa) 

y-momentum 

(I’b-c)@ = - $ + &$~~~-u2~) (lob) 

3. SOLVING THE LINEAR STABILITY 
EQUATION 

Previous investigators solved their linear stability 
equations by simple shooting from rl = rlT, where one 
matches the asymptotic solution valid as q -+ a to 
11 = 0, and one seeks to satisfy the conditions that 
apply at q = 0 [S, 6, 14, IS]. However, we found simple 
shooting to be sufficient only for obtaining initial 
guesses for the solutions of Qureshi [ 141 and Higgins 
[15]. We obtained our results primarily by using the 
collocation (B-spline) code COLSYS [3]. To guide the 
simple shooting integrations we used three sets of 
independent integrals : 

0, =e-“‘, S, =O, H, = --fiemTq (12a) 

cf, =e-%‘I , Sz =O, Hz =0 (12b) 

U,Z 
% = - (ucG)2Pr(Pr- l) e-‘3”, S, = e-‘l”, 

H, = - 
z 

cPr G- 
c ’ 

where 

cc: = u2 -iwG, uf = cc’-iu Pr cG, 

R 
Z = 4@,qjRIq-‘. 

Here the subscripts I, 2, and 3 correspond to the 
inviscid, the viscous uncoupled and the viscous 
coupled solutions. 

The eigenvectors are expressed as the linear com- 
bination : 

(f;-c)S-O;@ = &WS) (IOC) 
where 

where c = /l/u, and 6 = + 1.0 for upflow and - I .O 
for downflow. 

We next specify the boundary conditions. If  the 
plate has sufficiently large thermal capacity, amust be 
zero at the isothermal surface, i.e. g(O) = 0. Evidently, 
at a large distance out (y + a), the disturbance quan- 
tities /?, li, and a must be zero. Therefore, the non- 
dimensional boundary conditions are : 

Q(O) = W(0) = S(0) = @‘(co) = S(m) = H(m) = 0. 

and where c,, c2 and c) are complex constants to bc 
determined. The constant c, is chosen as c, = I + Ii 
to fix the scale arbitrarily. 

To reduce error propagation and to avoid the inac- 
curacies inherent in simple shooting, the two-point 
boundary-value-problem solver COLSYS was used. 
With it we were able to compute accurate numerical 

(11) solutions of the stability equations in the range 
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0.29181 ,< R ,< 0.5. These cannot be found by simple 
shooting. 

To generate families of solutions, two different ud 
hoc schemes were used. These are described below. 
Since them is no simple way to normalize the solutions 
of the eigenvalue problem (I0a-c) and (1 I) which has 
all homogeneous boundary conditions, an alternative 
must be found to avoid the trivial solution. 

The first scheme, which succeeded, was to replace 
the boundary condition Q;(O) = 0 by 

0.6 

with IO-’ < /i, < 10eh or. alternatively, by 
G 

FIG. 7. Portions of computed neutral stability curves in the 
S’,(O) = kz (15) (G‘. %j plane tbr upper- and lower-branch solutions. 

with 0.04 < k2 < 0.2. Additionally. the condition 
@b(O) = 0 is replaced by @,(rl, ) = 0. (The reason for 
choosing @,(rl,) as zero. instead of @‘K(rlr ), is that 
Id+(rl)l decreases more rapidly as II+ 11, l-or moderate 
values of c( and /j than does I0,(r7-I )I. For extremely 
small a and /I (i.e. on the lower portion of the neutral 
stability curve), since IQ’R(t7, )I << lQ,(rl,)l as n --t tyX. 
4,(r~~) is chosen as nonzero and Q,(rl,-) =O.) It is 
the finiteness of the intervals of integration (finiteness 
of nT ) that makes these choices necessary. 

The computing procedure employed to use the 
orthogonal collocation code COLSYS for obtaining 
the neutral stability curve is quite similar to that 
employed in simple shooting. For a given value G, 
one guesses a pair of eigenvalues a and /I. One then 
solves the boundary-value problem (lOa<) and (11) 
with the modified boundary condition (14) or (l5), 
replacing CD;(O) = 0, using COLSYS, and one iterates 
by adjusting the values oT a and ,0 until the boundary 
conditions Q(Oj = O;(O) = 0 arc satisfied with 
p,K(o)l+p;(o)l < 10-b. 

The second scheme is to add the trivial diffcrcntial 
equations 

a, = 0, 9’ = 0 (16) 

to the system (IOaac) and to impose two nonzero 
conditions S’,(O) = k2 and S;(O) = k, with 0.05 
< lkll < 1.0 or, alternatively, QD,(rl,.) = k, and Sk(O) 
= k2 in addition to (I I). This scheme yields exact 
numerical solutions of the original eigenvalue problem 
(IOa-c), (I I) and (16). However, to get it to work 
accurate injtial guesses are required. 

When we used the first scheme, we insisted that, for 
a solution to be accepted, the following criteria were 
all met: 

(l7a) 

(17b) 

where M is the largest magnitude of any of the eigen- 
vector components (i.e. @, D’, Q”, S, S’. H) on 
0 < 11 < 11~. In addition, the error estimates given on 
output by COLSYS are less than 10-4. 

The second scheme was used t-or the purpose of 
verification and improvement of the numerical results, 
which were obtained by the first scheme. 

4. NUMERICAL RESULTS ON NEUTRAL 
STABILITY 

The critical Grashof number G,, is the smallest 
Grashof number on a neutral stability curve in the 
(G.fi) (or (G, B)) or (G. Z) plane. For G < G,, any 
small disturbance decays, whereas for G > G,, at least 
some disturbances are amplified. Since there is one 
neutral stability curve corresponding to each (R, 
-Ok(O)), we can consider G,, to be a function of 
R on the upper branch or the lower branch of the 
bifurcation curves shown in Fig. 3. 

We obtained neutral stability results that satisfy the 
criteria for accuracy (I 7a,b) for several R values in the 
range 0.29181 < R < 0.50. In particular, for R = 0.30 
and 0.32. we obtained rather complete neutral stability 
curves for the two steady-states. For R = 0.34 the 
neutral stability curve for the upper-branch solution 
is easily computed, but for R = 0.34, at lower values 
of G (i.e. G < 12) the computation of the neutral 
stability curve corresponding to the lower-branch 
solution is too sensitive to carry it out with confidence. 
In addition, we computed portions of the ‘IIOX of 
the neutral stability curves for the single solution at 
R = 0.29181, and for the upper-branch solution only 
at R = 0.38. Rather more complete stability curves are 
computed for the upper-branch solutions at R = 0.36, 
0.40, and 0.50. Examples of these results are shown in 
Figs. 7-19 and Tables l-3. 

Some of our numerical results on stability are pre- 
sented in the (G, B) plane, where 

> 

-21 
(18) 

This parameter B has no x dependence, it is pro- 
portional to the physical frequency j: Constant fre- 
quency paths for G are horizontal straight lines in the 
stability plane (G, B) ; see Figs. 9, I2 and 13. Also, 
some of our neutral stability results are presented in 
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Table I. Values of G,,. B*. r*, and A,,,, for various values 
ofR 

R 6 B* u* A,,;,, 

osou 
0.4ou 
0.38U 
0.36U 
0.34u 
0.32u 
0.3ou 
0.29181 
0.3OL 
0.31L 
0.34L 

22.81 
19.62 
18.48 
17.06 
15.23 
12.81 

9.19 
5.69 
3.16 
I so 

0.0828 0.2483 

0.0525 0.1899 
0.0476 0.1810 

0.041 I 0.1652 
0.0347 0.1477 

0.0280 0.1277 
0.0209 0.1030 

0.0161 0.082 I 
0.0146 0.0774 

0.0127 0.0583 
- 

____ 

0. I909 
0. I478 

- 
0.1314 
0. I246 
0.1 182 
0.1 I25 
0.1090 
0.1058 
0.1022 
0.099 I 

terms of a parameter A, which has no s dependence. 
where 

A = rG-’ z = 2,” $a,lT,,-T,/” (19) 

The parameter A is proportional to the physical wave 
number 2x/i. Table I shows the maximum value of 
A. A,,,, at various values of R. 

If  1 r,,- T,., 1 is fixed (i.e. r, and T, are allowed to 
change equally. One can imagine that one can, within 
certain limits, vary the temperature T, of the vertical 
plate), a plot in the (G, B) plane (also the (G, a) and 
(G,/‘I) planes), or a table is useful in quantitatively 
analyzing the linear stability results. The quantity 
1 T, - T, 1 is assumed to be constant in the following 
discussion. 

0.048 

0.036 

j? 0.024 

0.012 

0 

0 5 IO 15 20 25 30 
G 

FE. 9. Portions of computed neutral stability curves in the 
(G. B) plane for upper- and tower-branch solutions. 

The critical Grashof number G,, steadily decreases 
from G,, = 22.81 to 5.69 as R decreases from R = 0.5 
to 0.2918 for flows corresponding to upper branch 
solutions. This is observed in Figs. 7-9 and Table I. 
Recall that for the region of largely downward base 
flow (0.29181 i R < OSO), inside buoyancy force 
reversals affect transport characteristics of base flows. 
The upward buoyancy force near q = 0 steadily 
increases as R decreases (i.e. the inside buoyancy force 
reversals become stronger). At the same time the heat 
fiux of base flows -Ok(O) consistently decreases from 
above 1.0 at R = 0.5 to 0.4940 at R = 0.29181. Thus. 
decreasing the heat flux of base flows causes the cor- 
responding point of instability G,, to decrease. In 
other words. increases in the magnitude of inside 
buoyancy force reversal cause the corresponding flows 
to become significantly more unstable. 

Table 2. Crossing points of the upper- and lower-branch solutions in the (G. 2) or (G. A) plane 
~~~~ -__- 

R 6, G,: G,z Tl a2 a, A, .42 A, 

0.30 10.05 29.17 66.90 0.1457 0.1518 0.427 I 0.0675 0.0818 0.105 
0.32 12.82 36.19 47.30 0.1287 0.3184 0.3640 0.0550 0.0963 0.101 
0.34 15.28 - - 0.1413 - 0.0569 - - 

A 0.5u 

I\ I I I I I I 
5 IO 15 20 25 30 0 50 100 150 200 250 300 350 

G G 

FIG. 8. Portions of computed neutral stability curves in the FIG. IO. Computed neutral stability curves in the (G, a) plane 
(G./I) plane for upper- and lower-branch solutions. for upper-branch solutions. 
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FIG. Il. Computed neutral stability curves in the (G, /I) plane 
for upper-branch solutions. 

As the parameter R or -O’,(O) is decreased. the 
shapes of the corresponding neutral stability curves 

in the stability planes systematically change. Not only 
G,, but also the quantities X* and B*, which are the 
values of a and /? at G,,. respectively, decrease sig- 
nificantly, as R or -O’,(O) decreases. The ‘nose’ of a 
neutral stability curve shifts toward the origin of the 
(G. B) (or (G. B)) and (G, X) planes and its shape 
becomes sharper as R decreases. This implies that the 
lower limits of unstable disturbance frequencies and 
wave numbers are expected to decrease as R decreases 
from 0.50 to 0.2918 I. 

As seen from Figs. 11 and 12, the upper part of the 
neutral stability curve in the (G, B) (or (G, /3)) plane 
corresponding to R = 0.50 is above that of the other 
curves. Evidently, the upper limit of unstable fre- 
quency for the flows is bounded by the value of 

0.5 
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FIG. 13. Computed neutral stability curves in the (G. f3) 
plant for lower-branch solutions. 

B,;,, = 0.4914 at R = 0.50. In other words, a flow (in 
the range 0.29 I8 I < R ,< 0.50) is always stable for the 
disturbance whose frcqucncy. in terms of B. is greater 
than 0.4914. The physical frequency corresponding to 
B= 0.4914 is 0.16 Hz if IT,,-T,.I = 4 C and 0.38 
Hz if ITo-T,I=8C, for (r,+T,.)/2=4C. It is 
expected that the upper limit of frequency with respect 
to R dccrcascs as R decreases. Also, it is observed 
from Table I that the upper limit of wave number 
A,,;,, decreases considerably as R or --Ok(O) decreases 
(see Fig. 10). The value of .4,:,, = 0.1909 at R = 0.50 
bounds the upper limit of wave number of unstable 
disturbances for flows (in the range 0.29181 < R 
< 0.50). For (T,,+ T,)/2 = 4 ‘C, the physical wave- 
length corresponding to A = 0.1909 is 4.1 cm if 
Ir,-T,I =4’C and 2.65 cm if Ir,-T,I =8’C. 
Thus. the flows corresponding to upper-branch 

Table 3. Crossing points of the upper- and lower-branch solutions in the (G,p) or (G, B) plane 

R G,J I G,Q G ,I3 BI 112 B.1 El B, El 

0.30 9.64 24.86 74.71 0.0119 0.0157 0.025 I 0.0253 0.0458 0.106 
0.32 12.83 24.00 63.92 0.0122 0.0187 0.0260 0.0284 0.0539 0.104 
0.34 15.29 30.20 41.72 0.0147 0.0230 0.0252 0.0365 0.07 I7 0.087 

50 100 150 200 250 300 350 

G 

FIG. 12. Computed neutral stability curves in the (G,B) FIG. 14. Computed neutral stability curves in the (G, c() plane 

plane for upper-branch solutions. for the upper- and lower-branch solutions at R = 0.30. 
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FK. IS. Computed neutral stability curves in the (G./I) plane 
for the upper- and lower-branch solutions at R = 0.30. 

solutions are more unstable for lower frequencies 
and wave numbers as R (or -U’,(O)) decreases. 

If  we consider flows corresponding to louver-branch 
solutions, the characteristics of their neutral stability 
are quite similar to those of Rows corresponding to 
upper-branch solutions. However, the behavior of the 
upper limit of frequencies with respect to -O’,(O) is 
quite different for these two kinds of solutions. As 
seen from Fig. 13, the value of B, at fixed G for G 2 20, 
corresponding to the upper portion of the neutral 
stability curves, consistently increases as -U;(O) 
decreases (or R increases) for lower-branch solutions. 
It is conjectured that the frequencies represented on 
neutral stability curves increase as R increases. How- 
ever, the values of B* and c(* (Band a at G,,) slightly 
decrease as R increases (see Table I). Thus, the how 
corresponding to a lower-branch solution is expected 
to be unstable for a wider range of frequencies as R 
increases. At the same time, one expects the range of 
unstable wave numbers to be reduced. 

if we consider both flows corresponding to upper- 
and lower-branch solutions, we find that the difference 
in G,,, B* and A,,,, between the value corresponding 
to the upper-branch solution and the value cor- 
responding to the lower-branch solution at the same 
R significantly increases as R increases from 
R = 0.29181 toward R = 0.34. For example, the 
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F~ti. 17. Computed neutral stability curves in the (G. /j) plane 
for the upper- and lower-branch solutions at R = 0.32. 

difference in G,, is 6.03 at R = 0.30 and I I .31 at 

R = 0.32. However, for R fixed in the range 
0.30 < R <.0.34, the neutral stability curve in the 

stability planes for a lower-branch solution crosses the 
curve for the corresponding upper-branch solution at 
one to three points; see Figs. 14-19 and Tables 2 and 
3. The interpretation or these curves is complicated 
due to their crossing each other. This will be discussed 
in Section 5. 

Figures 20 and 21 show the real and imaginary parts 
of the eigenvector components (a, W. S, H) which 
satisfy the accuracy criteria (I 7a,b), corresponding to 
the ‘IWSL’S’ of neutral stability curves at R = 0.34 and 
0.40. In these figures, the eigenvectors are normalized 
by the maximum value or the components. The shapes 
of the components of the eigenvectors change dra- 
matically as R changes in response to the change in 
strength of inside buoyancy force reversals. 

5. DISCUSSION AND CONCLUSION 

The previous section presented the major new 
findings in terms of stability planes by plotting non- 
dimensional wavelength and frequency versus modi- 

fied Grashof number. The concept of constant physi- 
cal frequency was discussed in the previous section. 
This concept is important in interpreting the physical 

1.0 
I 

0 50 100 150 200 250 

G 

FIG. 16. Computed neutral stability curves in the (G, a) plane FIG. 18. Computed neutral stability curves in the (G, a) plane 
for the upper- and lower-branch solutions at R = 0.32. for the upper- and lower-branch solutions at R = 0.34. 
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FIG. 19. Computed neutral stability curves in the (G./J) plane 
for the upper- and lower-branch solutions at R = 0.34. 

implications of our numerical results, since a path of 
constant physical frequency corresponds to a path 
on the stability plane as a disturbance is convected 
downstream. The basic premise here is that the physi- 
cal frequency of a disturbance will not change while 
the disturbance is still small ; that is, in the valid range 
of linear stability theory. 

When we consider the neutral stability curves in the 
(G,/Y) plane (or (G, B) plane) for two solutions 
corresponding to the upper- and lower-branch (mul- 
tiple steady-state) solutions at the same value of R in 
the range 0.30 < R < 0.34, we see that. in general, the 
neutral stability curve for the lower-branch solution 
intersects the curve for the upper-branch solution at 
three pomts G,,+ j = I,?, 3 ; see Table 3 and Figs. 15, 
17, and 19. These intersection points are where each 
branch has the same neutral stability at one particular 
frequency. For G < G,,, or G,,> < G < G,,, the first 
instability of the flow corresponding to a lower- 

-1.00 1 I I I I I I 
0 2.5 50 7.5 10.0 12.5 15.0 

‘) 

FIG. 20. Plots of eigenvector components vs t) corresponding 
to the upper-branch solution at R = 0.34 for a = 0.1477, 

/I = 0.014, G = 15.23, and q,. = 60. 
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F~ti. 21. Plots ofeigenvector components vs rl corresponding 
to the upper-branch solution at R = 0.40 for I = 0.1899, 

/j = 0.0195. G = 19.62. and r7, = 40. 

branch solution occurs sooner than the first instability 
of the how corresponding to an upper-branch solu- 
tion : for G,,, < G < G,,? or G > G,,, the reverse is true. 

It is interesting that, in general for various values 
of R, neutral stability for upper- compared to that for 
lower-branch solutions is more easily distinguished in 
the (G,cr) plane (wave number vs Grashof number) 
than in the (G, b) plane (frequency vs Grashof num- 
ber). In the (G,sr) plane. at R = 0.34 the neutral sta- 
bility curves for two upper- and lower-branch solutions 
intersect only at one point; see Fig. 18. However, 
for R = 0.30 and R = 0.32 the two stability curves 
corresponding to the upper- and lower-branch solu- 
tions in the (G,a) plane intersect each other at three 
points G,,, j = 1.2,3; see Table 2 and Figs. I4 and 
16. The values of G at the points of intersection are 
not the same as those in the (G. 8) plane. 

The critical Grashof number for the lower-branch 
solution is much less than that for the corresponding 
upper-branch solution. This implies that the lower- 
branch solutions are less stable. Indeed :he lower- 
branch solutions may not be observable. Nevertheless, 
the flow for some lower-branch solutions might be 
more stable at the initial stage of instability. For so/ne 
disturbances. for example, those which are in a band 
of frequencies B, < B < B? with wave numbers 
A, < A < A2 in the first crossing region (i.e. for both 
G,,, < G < G,j2 and G,, < G < G.?), the flow for the 
lower-branch solutions appears to be more stable than 
the Row for the corresponding upper-branch 
solutions. Thus, our results give an idea under what 
conditions the multiple steady-state solutions found 
in El-Henawy ~‘r al. [4] can exist and may be observ- 
able. The experimental data from Wilson and Vyas 
[l I] for R = 0.317 and from Carey and Gebhart [12] 



434 Y. HWANG e/ al. 

for R = 0.254 support the conclusion that oscillation 
between steady-state flows may exist. i.e. there may 
bc oscillations between the upper- and lower-branch 
solutions. However, their experimental data only 
crudely fit these two solutions (see Figs. 8 and 9 in 
Carey and Gebhart [12] and Figs. 4-7 in Wilson and 
Vyas [I I]). 

As the density extremum parameter increases, the 
range of the second crossing region of G in the (G, /I) 
plane (i.e. G,,? < G < C,,:) is significantly reduced 
from 49.85 at R = 0.30 to 11.52 at R = 0.34. 
Moreover, the corresponding range in the (G, a) plane 
(i.e. GZ? < G < G,,) is also significantly reduced from 
37.73 at R = 0.30 to IO.1 I at R = 0.32. The second 
crossing region for the (G, a) plane no longer exists at 
R = 0.34 so that there is no common range of G 
corresponding to the second crossing region in both 
stability planes. As R approaches R = 0.34, the two 
neutral stability curves for the upper- and lower- 
branch solutions become distinct from each other: the 
shapes of their profiles differ and there are cor- 
responding significant differences in their critical Gras- 
hof numbers G,, and in their upper limits of wave 
number A,,,, (see Table 1). Thus, we conjecture that 
for the range R > 0.34, the neutral stability curves 
corresponding to the two solutions have only one 
point of intersection in the (G,cc) and (G./l) planes 
and have no second crossing region in either the (G, c() 
and (G, 8) planes. We also conjecture that the profiles 
of the curves become more distinctive and their G,, 
values differ more significantly from each other as R 
increases from R = 0.34. We believe this is mainly 
because the G,, and A,,, values corresponding to the 
lower-branch solutions become extremely small and 
approach zero while the G,, and A,,, values cor- 
responding to upper-branch solutions increase. 

For a multiple steady-state problem, the initial 
condition is very important. Also, depending on the 
amplitude of the disturbance, the flow may jump from 
the lower-branch to the upper-branch solution of the 
base flow. However, the authors could not perform the 
stability analyses concerning the spatial or temporal 
amplifications (also, initial conditions). Thus, we 
could not understand these mechanisms. Our study is 
only confined to the neutral stability analysis. 

For the range 0.2918 I < R < 0.34, one cannot eas- 
ily judge from our results which flow is more stable 
under the action of narural disturbances (without 
experimentally introducing controlled disturbances). 
One flow is not more stable for a wide region of G, 
but only relatively more stable, at the stage of initial 
instability, for subregions of G than is the other flow. 
Thus, there may be oscillations between the upper- 
and lower-branch solutions for ranges of R < 0.34. 
There is a greater possibility, especially for R 
approaching 0.29181, to observe such oscillations. If  
R 2 0.34, we believe oscillatory flows cannot exist and 
we conjecture that there is no possibility to observe 
the lower-branch solutions of the base flows, because 
the features characterizing their neutral stability are 

quite distinctive from those belonging to upper- 
branch solutions. 

Some of the main features of the effects of the 
inside buoyancy force reversals in the region 
0.29181 < R < 0.5 upon natural convection adjacent 
to a vertical isothermal surface in cold water can be 
readily recognized from the results of our linear sta- 
bility calculations. An increase in the magnitude of 
the inside buoyancy force reversals always causes the 
critical Grashof number to decrease significantly. It is 
easy to show that there is a destabilizing effect due to 
the characteristics of the buoyancy force. This effect 
is a consequence of the dependence of the number of 
points of inflection and their location, in the profile 
of velocity of the base flow. upon buoyancy force 
reversals. 

I f  we exclude lower-branch solutions, we can show 
that the buoyancy force at q = 0 controls the cur- 
vature of the velocity profile by applying boundary 
conditions at q = 0 to the equation (4a) : 

.E(O) = -h(ll-RIY-[RjY) (20) 

where 6 = - I for downflow. The quantity ] I- RI9 
- ] RI represents the buoyancy force at the vertical 
surface. 

From equation (20). we set that .fr(O) is always 
positive for a flow whose velocity profile has two 
points of inflection, in the region 0.29181 < R < 0.5. 
f r (0) = - I for a normal natural convection flow (i.e. 
R = 0, y  = I and 6 = + I for the Boussinesq situ- 
ation), whose velocity profile has only one point of 
inflection. Let us call the first point of inflection 17r,,,, 
and the second point of inflection ~r,,.~. I f  q < qr _,.,, 
then fb”(rl) > 0; if vp.l.l < v  G qla.l.2, then ./T’(q) ,< 0 
and if q > 17r.~.,, then f:(q) > 0. If/r(O) + O+, the 
corresponding ~P.I.I and v,,,.~ + O+. If&“(O) < 0 for 
R 2 0.50, only a single point of inflection exists. Thus, 
for an upper-branch solution, the buoyancy force at 
t7 = 0 controls the curvature of its velocity profile near 
11 = 0. 

There is only one point of inflection in the velocity 
profile of the base flow for R = 0.50, where the buoy- 
ancy force is unidirectionally downward. However, in 
the case of the flow region 0.29181 6 R < 0.50, two 
points of inflection always exist and these points shift 
toward q = 0 as the upward inside buoyancy force 
reversal becomes weaker. Accordingly, the heat trans- 
fer rate -O;(O) increases as R decreases from 0.5 
to 0.29181 (lower-branch solutions) and further 
increases as P increases from 0.29181 (upper-branch 
solutions). At the same time the critical Grashof 
number consistently increases. 
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